首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   5篇
  国内免费   7篇
测绘学   1篇
大气科学   11篇
地球物理   50篇
地质学   58篇
海洋学   73篇
天文学   41篇
综合类   1篇
自然地理   25篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2017年   7篇
  2016年   9篇
  2015年   3篇
  2014年   3篇
  2013年   8篇
  2012年   8篇
  2011年   8篇
  2010年   11篇
  2009年   11篇
  2008年   19篇
  2007年   21篇
  2006年   16篇
  2005年   7篇
  2004年   13篇
  2003年   7篇
  2002年   9篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   8篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1977年   3篇
  1976年   5篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1969年   2篇
排序方式: 共有260条查询结果,搜索用时 171 毫秒
51.
The SOLAR-A spacecraft has spectroscopic capabilities in a wide energy band from soft X-rays to gamma-rays. The Wide Band Spectrometer (WBS), consisting of three kinds of spectrometers, soft X-ray spectrometer (SXS), hard X-ray spectrometer (HXS) and gamma-ray spectrometer (GRS), is installed on SOLAR-A to investigate plasma heating, high-energy particle acceleration, and interaction processes. SXS has two proportional counters and each counter provides 128-channel pulse height data in the 2–30 keV range every 2 s and 2-channel pulse count data every 0.25 s. HXS has a NaI scintillation detector and provides 32-channel pulse height data in the 20–400 keV range every 1 s and 2-channel pulse count data every 0.125 s. GRS has two identical BGO scintillation detectors and each detector provides 128-channel pulse height data in the 0.2–10 MeV range every 4 s and 4-channel pulse count data (0.2–0.7, 0.7–4, 4–7, and 7–10 MeV) every 0.25–0.5 s. In addition, each of the BGO scintillation detectors provides 16-channel pulse height data in the 8–100 MeV range every 4 s and 2-channel pulse count data (8–30 and 30–100 MeV) every 0.5 s. The SXS observations enable one to study the thermal evolution of flare plasma by obtaining time series of electron temperatures and emission measures of hot plasma; the HXS observations enable one to study the electron acceleration and heating mechanisms by obtaining time series of the electron spectrum; and the GRS observations enable one to study the high-energy electron and ion acceleration and interaction processes by obtaining time series of electron and ion spectra.After the launch the name of SOLAR-A has been changed to YOHKOH.  相似文献   
52.
The depositional environments and bivalve assemblages are determined for the Upper Cretaceous Hinoshima Formation of the Himenoura Group, Kamishima, Amakusa Islands, Kyushu, Japan. The Hinoshima Formation is characterized by a thick transgressive succession that varies from incised-valley-fill deposits to submarine slope deposits with high aggradation rates of depositional systems. The incised valley is filled with fluvial, bayhead delta, brackish-water estuary, and marine embayment deposits, and is overlain by thick slope deposits.Shallow marine bivalves are grouped into five fossil assemblages according to species composition: Glycymeris amakusensis (foreset beds of a bayhead delta), Nippononectes tamurai (foreset beds of a bayhead delta), Ezonuculana mactraeformisNucula formosa (central bay), Glycymeris amakusensisApiotrigonia minor (slope), and Inoceramus higoensisParvamussium yubarensis (slope). These bivalve assemblages all represent autochthonous and parautochthonous conditions except for a Glycymeris amakusensisApiotrigonia minor assemblage found in debris flow and slump deposits. The life habitats of these bivalves and the compositions of the assemblages are discussed in terms of the ecological history of fossil bivalves of the mid- to Late Cretaceous.  相似文献   
53.
The Sunda Strait is located in a transitional zone between two different modes of subduction, the Java frontal and Sumatra oblique subductions. Western Java and Sumatra are, however, geologically continuous.The Krakatau complex lies at the intersection of two graben zones and a north-south active, shallow seismic belt, which coincides with a fracture zone along this seismic belt with fissure extrusion of alkali basaltic rocks commencing at Sukadana and continuing southward as far as the Panaitan island through Rajabasa, Sebuku and Krakatau.Paleomagnetic studies suggest that the island of Sumatra has been rotating clockwise relative to Java from at least 2.0 Ma to the present at a rate of 5–10h/Ma, and therefore the opening of the Sunda Strait might have started before 2 Ma (Nishimura et al. 1986).From geomorphological and seismological studies, it is estimated that the western part of Sumatra has been moving northward along the Semangko fault and the southern part of Sunda Strait has been pulled apart.Assuming that the perpendicular component (58 mm/yr; Fitch 1972) of the oblique subduction has not changed, we can estimate that the subduction started at 7–10 Ma. Huchon and LePichon (1984) also estimated that the subduction started at 13 Ma.Recent crustal earthquakes in the Sunda Strait area are clustered into three groups: (1) beneath the Krakatau complex where they are typically of tectonic origin, (2) inside a graben in the western part of the strait, and (3) in a more diffuse zone south of Sumatra. The individual and composite focal mechanisms of the events inside the strait show an extensional regime. A stress tensor, deduced from the individual focal mechanisms of the Krakatau group shows that the tensional axis has a N 130°E orientation (Harjono et al. 1988).These studies confirm that the Sunda Strait is under a tensional tectonic regime as a result of clockwise rotation along the continental margin and northward movement of the Sumatra sliver plate along the Semangko fault zone.  相似文献   
54.
Morphological characteristics of snow ripples formed by drifting snow were investigated as functions of wind velocity in a cold wind tunnel at -15 °C. Wave-length, wave height and migration rate of snow ripples increased from 5 to 20 cm, 3 to 5 mm and 1 to 8 cm/min, respectively, with increasing wind velocity from 5 to 7 m/s. Measured size distributions of snow particles in snow ripples showed sorting of large particles in ridges, suggesting that the snow ripple migration is caused by creeping of large particles. The snow drift rate caused by creep, that is, by the ripple migration, was estimated to amount, at least, to 6% of the total snow drift rate.  相似文献   
55.
Bimodal volcanism, normal faulting, rapid sedimentation, and hydrothermal circulation characterize the rifting of the Izu-Bonin arc at 31°N. Analysis of the zigzag pattern, in plan view, of the normal faults that bound Sumisu Rift indicates that the extension direction (080° ± 10°) is orthogonal to the regional trend of the volcanic front. Normal faults divide the rift into an inner rift on the arc side, which is the locus for maximum subsidence and sedimentation, and an outer rift further west. Transfer zones that link opposing master faults and/or rift flank uplifts further subdivide the rift into three segments along strike. Volcanism is concentrated along the ENE-trending transfer zone which separates the northern and central rift segments. The differential motion across the zone is accommodated by interdigitating north-trending normal faults rather than by ENE-trending oblique-slip faults. Volcanism in the outer rift has built 50–700 m high edifices without summit craters whereas in the inner rift it has formed two multi-vent en echelon ridges (the largest is 600 m high and 16 km long). The volcanism is dominantly basaltic, with compositions reflecting mantle sources little influenced by arc components. An elongate rhyolite dome and low-temperature hydrothermal deposits occur at the en echelon step in the larger ridge, which is located at the intersection of the transfer zone with the inner rift. The chimneys, veins, and crusts are composed of silica, barite and iron oxide, and are of similar composition to the ferruginous chert that mantles the Kuroko deposits. A 1.2-km transect of seven alvin heat flow measurements at 30°48.5′N showed that the inner-rift-bounding faults may serve as water recharge zones, but that they are not necessarily areas of focussed hydrothermal outflow, which instead occurs through the thick basin sediments. The rift basin and arc margin sediments are probably dominated by permeable rhyolitic pumice and ash erupted from submarine arc calderas such as Sumisu and South Sumisu volcanoes.  相似文献   
56.
The profile of a river that conveys sediment without net deposition and net erosion is referred to as ‘graded’ with respect to vertical aggradation of the river segment. Three experimental series, designed in terms of the autostratigraphic view of alluvial grade, were conducted to clarify the diagnostic spatial behaviour of graded alluvial–deltaic rivers: an ‘R series’, which utilized a moving boundary setting with a stationary base level; an ‘F series’ in a fixed boundary setting with a stationary base level to produce ‘forced grade’; and an ‘M series’ in a moving boundary setting with constant base‐level fall to produce ‘autogenic grade.’ The results of the three experimental series, combined with geometrical modelling of the effects of basin water depth and other experimental data, suggest the following: (i) in a graded alluvial–deltaic system, lateral shifting and avulsing of active distributary channels are suppressed regardless of whether the downstream boundary of the deltaic system is fixed; (ii) in a delta with a downstream‐fixed boundary, the graded streams are stabilized within a valley that is incised in the axial part of the delta plain, whereby the alluvial plain outside the valley is abandoned and terraced; (iii) in moving boundary settings, the graded river simply extends basinward as a linearly elongated channel and lobe system without cutting a valley; and (iv) a modern forced‐graded alluvial river is most likely to be found in a valley incised into a fan delta in front of very deep water, and the stratigraphic signal of fossil autogenic‐graded rivers will be found in deltaic successions that accumulated in the outer to marginal areas of deltaic continental shelves during sea‐level falls. This renewed autostratigraphic view of alluvial grade suggests a thorough reconsideration of the conventional understanding that an alluvial river feeding a progradational delta is graded with a stationary base level.  相似文献   
57.
By means of narrow-band Fabry-Perot filters, which exclude the interference from molecular line fluorescence, the brightness of Comet Kohoutek (1973f) has been measured at 8560 and 8748 Å. Data reduction on the basis of averaged Mie-scattering cross sections indicates that the dust production rate was different before and after perihelion at the same heliocentric distances. This asymmetry suggests that vaporization and dust entrainment were governed by fractionation of a multicomponent mixture of parent molecules in a comparatively porous cometary nucleus.  相似文献   
58.
The horizontal components from fourteen Ocean Bottom Seismometers deployed along four profiles focused along the western margin of the Jan Mayen microcontinent, North Atlantic, have been modelled with regard to S-waves, based on P-wave models obtained earlier. The seismic models have furthermore been constrained by 2D gravity modelling. High V p/V s-ratios (2.3–7.9) within the Cenozoic sedimentary section are attributed to significant porosities, whereas V p/V s-ratios in the order of 1.9–2.2 for the Mesozoic and Paleozoic sedimentary rocks indicate shale-dominated lithology throughout the area. The eastern side of the Jan Mayen Ridge is interpreted as a passive, volcanic margin, based on relatively high crustal V p/V s-ratios (1.9), whereas lower V p/V s-ratios (1.75–1.8) suggest the presence of intermediate composition crust and non-volcanic margin on the western side of the ridge. In the westernmost part of the Jan Mayen Basin, slightly increased upper mantle V p/V s-ratios may indicate some degree of serpentization of upper mantle peridotites.  相似文献   
59.
Adjustments to satellite constrained navigation are required to match SeaBeam bathymetric data at track crossings due to errors in dead reckoning and inaccuracies in satellite fixes. By shifting one of the SeaBeam swaths involved in a track crossing relative to the other and calculating the sum of the squares of the differences in bathymetry within the area of overlapping coverage, we map a two-dimensional error surface whose minimum corresponds to the best estimate of the correction to navigation required at the crossing point. Estimates of the covariance of this correction are derived from the error surface. We employ the curve fitting technique of Tarantola and Valette (1982) to invert for a smooth correction function to a starting model of the position of the ship as a function of time. This technique incorporates formal errors assigned to dead reckoning, satellite fixes, and the shifts required to match bathymetric swaths at crossing points in a simultaneous inversion for the correction function for all tracks within the study area.In a test of the method in a study area on the southern Mid-Atlantic Ridge, a data set involving two cruises, 30 days of SeaBeam data, and 753 track crossings, we found that crossing SeaBeam swaths can potentially resolve the relative position of the ship on the two tracks to within 30 to 70 m. The inversion procedure yielded a much better constrained navigation function and much improved match of bathymetry. The final model of the navigation fit crossing shifts about as well as satellite data (with respect to their assigned data errors) with the RMS value of the crossing shifts decreasing from 1200 m in the original satellite-constrained navigation to 200 m in the final solution. However, the potential resolution of position using SeaBeam swaths was not fully achieved in the solution because there are systematic bathymetric artifacts in SeaBeam data, multiple local minima in the error surfaces in highly lineated topography, inadequate dead reckoning data, occasional bad satellite fixes, and limitations on the short period corrections allowed in the model.  相似文献   
60.
The Algal Growth Potential (AGP) of water samples collected off Gamagori in Mikawa Bay was measured from May 1978 through February 1979, and the limiting nutrient was determined using regression analysis and enrichment bioassays. The surface and bottom water samples had AGP that produced increments of chemical oxygen demand (COD) of 2.1 mg l–1 and 3.1 mg l–1, respectively, on average. These values ofCOD correspond to 46% and 97% of the average COD values of the raw water samples at the surface and bottom, respectively. Seasonal changes of AGP showed a close correlation with those of dissolved inorganic nitrogen (DIN) concentration. Enrichment bioassays showed that DIN was the most deficient nutrient. The DIN:phosphate-phosphorus (PO4 3–-P) ratios and DIN: dissolved phosphorus (DP) ratios in the water samples were below the cellular N:P ratios of the natural algal populations. These results suggest that AGP was mainly limited by DIN concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号